Cluster significance testing using the bootstrap.

نویسندگان

  • William F Auffermann
  • Shing-Chung Ngan
  • Xiaoping Hu
چکیده

Many of the statistical methods currently employed to analyze fMRI data depend on a response template. However, the true form of the hemodynamic response, and thereby the response template, is often unknown. Consequently, cluster analysis provides a complementary, template-free method for exploratory analysis of multidimensional fMRI data sets. Clustering algorithms currently being applied to fMRI data separate the data into a predefined number of clusters (k). A poor choice of k will result in erroneously partitioning well-defined clusters. Although several clustering algorithms have been successfully applied to fMRI data, techniques for statistically testing cluster separation are still lacking. To address this problem we suggest a method based on Fisher's linear discriminant and the bootstrap. Also introduced in this paper is a measure based on the projection of multidimensional data from two clusters onto the vector, maximizing the ratio of the between- to the within-cluster sums of squares. The resulting one-dimensional distribution may be readily visualized and used as a heuristic for estimating cluster homogeneity. These methods are demonstrated for the self-organizing maps clustering algorithm when applied to event-related fMRI data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing two testing procedures in unbalanced two-way ANOVA models under heteroscedasticity‎: Approximate degree of freedom and parametric bootstrap approach

‎The classic F-test is usually used for testing the effects of factors in homoscedastic two-way ANOVA models‎. ‎However‎, ‎the assumption of equal cell variances is usually violated in practice‎. ‎In recent years‎, ‎several test procedures have been proposed for testing the effects of factors‎. ‎In this paper‎, ‎the two methods that are approximate degree of freedom (ADF) and parametric bootstr...

متن کامل

Resampling Methods for Homogeneity Tests of Covariance Matrices

Testing hypotheses on covariance matrices has long been of interest in statistics. The test of homogeneity is very often a preliminary step in discriminant analysis, cluster analysis, MANOVA, etc. In this article we propose nonparametric tests which are based on the eigenvalues of the differences among the sample covariance matrices after a common rescaling. Three resampling techniques for calc...

متن کامل

Statistical Significance Testing: The Bootstrapping Method and an Application to Self-Control Theory

The present study discusses two problems with statistical significance testing (i.e., tautology and violation of statistical assumptions) that require supplemental analysis. The bootstrap method is presented as a form of internal replication to learn about the consistency of and augment the findings from statistical significance tests in many criminal justice and criminology research findings. ...

متن کامل

MELD: Mixed effects for large datasets

Mixed effects models provide significant advantages in sensitivity and flexibility over typical statistical approaches to neural data analysis, but mass univariate application of mixed effects models to large neural datasets is computationally intensive. Threshold free cluster enhancement also provides a significant increase in sensitivity, but requires computationally-intensive permutation-bas...

متن کامل

Descriptive Vocabulary Development for Degraded Speech

This paper presents the development of a compact vocabulary for describing the audible characteristics of degraded speech. An experiment was conducted with 51 English-speaking subjects who were tasked with assigning one of a list of given text descriptors to 220 degradation conditions. Exploratory data analysis using hierarchical clustering resulted in a compact vocabulary of 10 classes, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2002